Wing flexibility improves bumblebee flight stability.

نویسندگان

  • Emily A Mistick
  • Andrew M Mountcastle
  • Stacey A Combes
چکیده

Insect wings do not contain intrinsic musculature to change shape, but rather bend and twist passively during flight. Some insect wings feature flexible joints along their veins that contain patches of resilin, a rubber-like protein. Bumblebee wings exhibit a central resilin joint (1m-cu) that has previously been shown to improve vertical force production during hovering flight. In this study, we artificially stiffened bumblebee (Bombus impatiens) wings in vivo by applying a micro-splint to the 1m-cu joint, and measured the consequences for body stability during forward flight in both laminar and turbulent airflow. In laminar flow, bees with stiffened wings exhibited significantly higher mean rotation rates and standard deviation of orientation about the roll axis. Decreasing the wing's flexibility significantly increased its projected surface area relative to the oncoming airflow, likely increasing the drag force it experienced during particular phases of the wing stroke. We hypothesize that higher drag forces on stiffened wings decrease body stability when the left and right wings encounter different flow conditions. Wing splinting also led to a small increase in body rotation rates in turbulent airflow, but this change was not statistically significant, possibly because bees with stiffened wings changed their flight behavior in turbulent flow. Overall, we found that wing flexibility improves flight stability in bumblebees, adding to the growing appreciation that wing flexibility is not merely an inevitable liability in flapping flight, but can enhance flight performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wing flexibility enhances load-lifting capacity in bumblebees.

The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force prod...

متن کامل

Dynamic flight stability of a hovering bumblebee.

The longitudinal dynamic flight stability of a hovering bumblebee was studied using the method of computational fluid dynamics to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. For the longitudinal disturbed motion, three natural modes were identified: one unstable oscillatory mode, one stable fast subsidence mo...

متن کامل

Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push...

متن کامل

Direct measurement of oxygen partial pressure in a flying bumblebee.

The gas transport system of a bumblebee was investigated by measuring the oxygen partial pressure P(O(2)) in the wing muscle. In the resting bee, P(O(2)) showed a regular pattern of fluctuation with a typical period of 70-120s. Fluctuations in muscular P(O(2)) were associated with intermittent abdominal pumping. Ventilation by abdominal movements may not be necessary during rest because P(O(2))...

متن کامل

Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.

The wings of many insects accumulate considerable wear and tear during their lifespan, and this irreversible structural damage can impose significant costs on insect flight performance and survivability. Wing wear in foraging bumblebees (and likely many other species) is caused by inadvertent, repeated collisions with vegetation during flight, suggesting the possibility that insect wings may di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2016